Penjelasan dengan langkah-langkah:
a)
[tex] {3}^{6} \div \frac{ {3}^{5} \times {3}^{3} }{ {3}^{4} } \\ = {3}^{6} \times \frac{ {3}^{4} }{ {3}^{5} \times {3}^{3} } \\ = \frac{ {3}^{6 + 4} }{ {3}^{5 + 3} } \\ = \frac{ {3}^{10} }{ {3}^{8} } \\ = {3}^{10 - 8} \\ = {3}^{2} [/tex]
b)
[tex] {( \frac{1}{ {y}^{ - 1} } )}^{ - 4} \times {( {y}^{ - 3}) }^{4} \\ = \frac{1}{ {y}^{4} } \times {y}^{ - 12} \\ = {y}^{ - 12 - 4} \\ = {y}^{ - 16} \\ = \frac{1}{ {y}^{16} } [/tex]
c)
[tex] \frac{ {2}^{3} {x}^{ - 4} }{ {x}^{ - 6} } \\ = {2}^{3} \times {x}^{ - 4 - ( - 6)} \\ = 8 {x}^{2} [/tex]
d)
[tex] {( \frac{ {p}^{2} }{ {q}^{ - 3} } )}^{3} \times {( \frac{2q}{ {p}^{3} }) }^{2} \\ = \frac{ {p}^{6} }{ {q}^{ - 9} } \times \frac{ {2}^{2} {q}^{2} }{ {p}^{6} } \\ = {2}^{2} \times {p}^{6 - 6} \times {q}^{2 - ( - 9) } \\ = 4 {q}^{11} [/tex]
e)
[tex] \frac{2 {x}^{3} + 4 {x}^{6} }{ {x}^{ - 2} } \\ = \frac{2 {x}^{3} }{{x}^{ - 2} } + \frac{4 {x}^{6} }{ {x}^{ - 2} } \\ = 2 \times {x}^{3 - ( - 2)} + 4 \times {x}^{6 - ( - 2)} \\ = 2 {x}^{5} + 4 {x}^{8} [/tex]
[answer.2.content]